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Data modeling is an approach to basic concepts of data and statistics in middle school that helps siudents to
transform their initial, and often misguided, understandings of variability and chance to forms of reasoning that
coordinate chance with variability by designing learning environments that support this reasoning by allowing
students to invent and revise models, The Assessing Data Modeling and Statistical Reasoning (ADMSR) proj-
ect is a collaborative effort between measurement and learning specialists that has developed a curricnlar and
embedded assessment system based on a framework of seven constructs that deseribe the elements of statistical
learning, Taken together, the seven constructs described above form a leaming progression.

There are different ways to conceive and measure learning progressions. The approach used by the ADMSR project
followed the “four building blocks™ approach outlined by the Berkeley Evaluation and Assessment Research
(BEAR) Center and the BEAR Assessment System, The final building block of this approach involves the ap-
plication of 2 measurement model. This paper focuses on the application of unidimensional and multidimensional
item response theory (IRT) measurement models to the data from the ADMSR project. Unidimensional IRT
models are applied to aid in construct development and validation to see if the proposed theory of development
presented by the construct map is supported by the results from an administration of the instrument. Multidi-
mensional IRT measurement models are applied to examine the relationships between the seven constructs in
the ADMSR. learning progression. When applying the multidimensional model, specific links between levels of
the constructs are analyzed across constructs after the application of a technique to align the seven dimensions.
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In order to master both statistics and informal
inference, one must first understand the different
concepts underlying data analysis and probability,
such as the nature of chance and the idea of vari-
ability (Metz, 1998). Thus, a central aspect of
any statistics curriculum in primary grade-level
education will be the identification of the set of
basic concepts that support data based decision
making, and that cen serve as a basis for more
advanced statistical reasoning. Data Modeling
{Lehrer and Romberg, 1996; Horvath and Lehrer,
1998) is an approach to leaming basic concepts of
data and statistics. It helps students to transform
initial, and often misgunided, inderstandings of
variability and chance to forms of reasoning
that coordinate chance together with variability.
It accomplishes this by designing learning en-
vironments that support this kind of reasoning
by guiding students to invent and revise medels
(Lehrer and Kim, 2009).

The different components of statistical rea-
soning are integrated to form the Data Modeling
approach to learning which is represented by
Figure 1. As Figure 1 illustrates, Data Modeling
arises out of an inquiry about a well-chosen real
world phenomenon, The first step of the process is
the selection of certain measureable attributes that
have the potential to inform the inquiry. Attributes
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Figure 1. Data Modeling Integrates Inquiry, Data,
Chance and Inference (Lehrer, Kim, Ayers and Wilson,
2014).

are then defined and measured. By measuring
these attributes, data is generated. This data must
then be structured and represented to support
the purposes of the inquiry. Statistics measure
characteristics of distributed data, and models of
chance support inference about these statistics in
light of the inherent variability in chance events
(Lehrer, Kim, Ayers and Wilson, 2014).

Assessing Data Modeling and the BEAR
Assessment Systen

The Assessing Data Modeling and Statistical
Reasoning (ADMSR) project is a coliaborative
effort between measurement and learning special-
ists to develop a curricular and embedded assess-
ment system in the areas of statistical reasoning in
a Data Modeling curricelum (Burmester, Zheng,
Karelitz, and Wilson, 2006; Lehrer, Schauble,
Wilson, Lucas, Karelitz, Kim, et al., 2007). The
instruments for measoring students” ability in
the Data Modeling domains were designed and
implemented under the guidance of the Berkeley
Evaluvation and Assessment Research (BEAR)
Center following the framework of the BEAR
Assessment System (BAS; Wilson, 2005, 2009;
Wilson and Sloane, 2000), which is based on the
idea that good assessment addresses the need for
sound measurement through four principles: (1) a
developmental perspective, (2) a match between
instruction and assessment, (3) the generating
of quality evidence, and (4) management by
instructors to altow appropriate feedback, feed
forward, and follow-up. These four principles are
embodied in the BAS® “four building blocks” for
construeting quality assessments (Wilson, 2005):

+  Construct Maps

= Items Design

*  Qutcome Space

+  Measurement Model.

In the following paragraphs we illustrate
how the Four Building Blocks have played ount
in the ADMSR praject. The first building block,
the construct map, is a description of a latent trait
or construct and is an ordering of qualitatively
different levels of performance focusing on one
characteristic. A construct map is used to repre-
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sent a cognitive theory of leaming consistent with
a developmental perspective. Figure 2 shows an
example of one of the construct maps from the
ADMSR project, the Conceptions of Statistics
construct map.

A construct map assumes that the construct
being measured can be represented by a con-
tinuum of ability punctuated by “reference poinis”
with lower reference points of the construct at
the bottom of the construct map going up toward
more expert reference points at the top end of
the map. These “reference points™ are also often
labeled as “levels.” Within each of the levels,
there are sub-levels (which may or may not be
ordered depending on the content). The Concep-

tions of Statistics construct map presented here
will de described in greater detail in the following
paragraphs.

The ADMSR project has developed a frame-
work of seven basic constructs that describe
the elements of statistical learning. The seven
constructs, or progress variables, considered in
this framework were developed through a series
of design experiments to explore the typical pat-
terns of change as students learned to construct
and revise models of data as a part of the Data
Modeling curriculum. The first construct, Theory
af Measurement (ToM), maps the degree to which
students understand the mathematics of mea-
surement and develop skills in measuring. This

Conceptions of Statistics

Co084 - Investigate and anticipate qualities of a sampling distribution.

Predict and juslify changes in a sampling distribution based cn changes in

CoseD propertics af a sample.

CoStC Predict that, whilé the value oF a statistic varies from sample-to-sample, its
behavior in repeated sampling will be regular and predictable.

CoS4B Recognize that the sample-t ple variation in a statistic i5 dug to chance.

CoS4A Predict that a statistic’s value will change from sample to sample.

le distr

Co0S3 - Consider statistics as measures of qualities of 2

'

CoS3F Choose/Evaluate statistic by considering quatities of one or more samples.
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construct represents the basic area of knowledge
in which the rest of the constructs are played out.!
The next construct, Data Display (DaD), traces
a progression of learning to construct and read
graphical representations of the data from an ini-
tial emphasis on cases toward reasoning based on
properties of the aggrepate. A closely associated
construct, Meta-Representational Competence
(MRC), proposes keystone understandings as
students learn to harness representations for mak-
ing claims about data and to consider trade-offs
among representations in light of these claims.
The fourth construct, Conceptions of Statistics

“(CoS), proposes a series of landrarks as students

come to first recognize that statistics measure
qualities of the distribution, such as center and
spread, and then go on to develop understand-
ings of statistics as generalizable and as subject
to sample-to-sample variation. Chance {Cha)
describes the progression of students’ understand-
ing about how chance and elementary probability
operate to produce distributions of vutcomes. The
Models of Variability (MoV) construct refers to
the progression of reasoning about employing
chance to model a distribution of measurements.
The seventh and final construct, Informal Infer-

1 Thus, other such constritets could be, say, natural
variation, leading towards topics such as evolution, ToM
was chosen as an initial topic because of its transparency and
accessibility for middle school students.

ence (Inl), describes a progression in the basis of
students® inferences based on single or multiple
samples.

The second building block of the BAS is
the ifems design. In this building block, items
are designed to elicit specific kinds of evidence
about a respondent’s ability in relation to the
construct map. The prime goal of a set of items
in the BAS is to generate student responses at
every level of the construct map. These items can
vary extensively by type, depending on the con-
text. In the ADMSR project, the items consisted
mostly of short constructed response items, but
included some multiple-choice items as well. An
example of the ADMSR. item “Kayla’s Project™
is shown in Figure 3. The Kayla’s Project item
assesses a small part of student understanding on
the Conceptions of Statistics construct. By asking
students to calculate a missing value given all
other values and a known mean, we are able to
assess their understanding of the mean and how
it is composed from component values.

After the items have been administered to
the respondents, the results are interpreted using
the third building block, the outcome space. The
ontcome space describes in detail how a respon-
dent’s answers to items are linked back to the
different levels of the construct map. Every item
in the ADMSR instruments provides evidence of
a respondent’s level on one or more of the seven

CoS3E Predict the effect on a staristic of 2 change i the process generating the sample.
CoS3D Predm how a statistic is affected hy changes in its components or otherwise
o knawledge of relations ameng compenents.
Generalize the use of a statistic beyand its ariginal context of application or
CoS3C b :
inventian.
CoS3B Invent a sharable (replicable) measurement process to quantify a quality of the
sample.
Cos3d Invent an idiosyncratic measurement process 1o guantify a quality of the sample

hased on tacit know!edge that others may not share.

Co0S52 - Calculate statistics,

CoS2B

Caleulate siatigtics-indicating variabilicy.

CoS2d

Calculate statistics indicating central tendency,

C 081 - Describe qualities of distribution informalky.

CoS1A

Use visual qualities of the data to summarize the distribution,

Figure 2. Conceptions.of Statistics (Co8) Construct Map from the ADMSR Leamn-

ing Progression

Kayla's Project

Kayla completes four projects for her social studies class. Each is worth 20
points.

Kayla'’s Projects—Points Earned
Project1 16 points
Project2 18 points
Project3 15 points
Project 4 727

The mean score Kayla received from zll four projects was 17.

1. Use this information to find the number of points Kayla received on
Project 4. Show your work.

Figure 3. The “Kayla’s Project” Item from ADMSR
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constructs. For the ADMSR project, scoring
exemplars were created which explicitly scored
student responses as a level on a construct map.
Aset of scoring exemplars for the Kayla’s project
itemn is shown in Figure 4.

The highest performing respondents to the
Kayla’s project item are scored at level 3 of the
CoS construct. At level 3, students are able to
employ more flexible strategies toward solving
this problem. For example, they understand that
if the mean of the four scores is 17, the scores
must add to 68. Given this first step, they are able
to find the missing score by subtracting the given
values from 68. Students at level 2 on the CoS
construct understand how to calculate the mean
and use the formula as they normally would when
provided a set of values. At this level, students
need to use a guess and check strategy in order
to solve the problem, but are able to calculate an
answer. Students who pave responses judged to
be relevant, but that did not provide evidence of

performing at a level on the CoS construct were
scored a “NL(ii),” while those who gave irelevant
responses were scored a “NL(i).” These “NL.” re-
sponses are coded this way to represent responses
to the item that have “no link™ to the levels on
the CoS construct map. Finally, respondents who
saw the item but did not provide a response were
scored asg missing.

The final building block of the BAS is the
measurement model. The measurement model
provides a principled way to use the information
about respondents and the items’ responses coded
in the outcome space to locate the respondents and
the items on the construct map {Wilson, 2003).
Different measurement models can be applied to
2 given instrument. Here, we apply measurement
models that model the ADMSR project data all
together as a single learning progression, and also
individually by applying a unidimensional mea-
surement model (the partial credit model, which
is defined below) to each of the seven constructs

Level | Response Descripton Example Student Responses
3D | Predict how a statistic is affected | 1, The differences between the
byhchangesdin its components or mean and each seare are -1, 1, -2,
otherwise demoenstrate -
knowledge of relations amongits | ° the last difference must be 2
components and the score must be 19,
2.
16 17 &%
1% X 4 —~40
+15 netenimame ————
e 6% 19
49
24 | Calculate statistics Indicating 16
central tendency. 18
15
20
68
+ 4
17
NL(ii) | Student begins to carry outa 1%
strategy, but not to completion. 16
+18
42

Figure 4. The Scoring Exemplar for “Kayla’s project™
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that comprise the learning progression to see if
the proposed theory of development presented
by each construct map is supported by the results
from the administration of the instrument to the
sample of students.

A collection of construct maps taken together
can comprise a learning progression (Draney,
2009; Wilson, 2009a). The seven constructs
described above form a single leaming progres-
sion for Data Modeling. A learning progression
describes “successively more sophisticated ways
of reasoning within a content domain that follow
one another as students learn” {Smith, Wiser, An-
derson, and Krajeik, 2006). Learning progressions
are conjectural models of learning over time: they
require empirical validation before they should
be used for guiding learning and instruction. The
processes of development and validation of learn-
ing progressions is accomplished through iterative

cycles of empirical testing and theoretical revision
and refinement {Duncan and Hmelo-Silver, 2009).

There are different ways to conceive and
measure learning progressions. The BEAR Center
has developed one approach to measuring learn-
ing progressions by using the assessment structure
of the domain of interest, The ADMSR. learning
progression can be represented by the collection
of the seven construct maps for the constructs
described above. The ADMSR learning progres-
sion, however, hypothesizes that a student not
cnly moves vertically up a single construct map,
but can also be expected to move simultaneously
across several construct maps (i.e. a student aper-
ating at a given level in one of the constructs will
be operating at a specific level on one or more of
the other constructs in the learning progression).
The theoretical connections between the con-
structs are displayed in Figure 5. An arrow repre-
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Figure 5. A Map of the Theoretical ADMSR Leamning Progression
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sents a specific connection between two levels of
constructs — success at the level at the “point” of
the arrow requires that a student has already suc-
ceeded at the level at the base of the arrow. In this
paper, the relationships between the constructs are
examined by modeling all seven of the constructs
in the ADMSR learning progression together us-
ing a multidimensional measurement model. In
addition, the specific links between levels of the
constructs are analyzed across constructs after
the application of a technique to align the seven
dimensions.

The theoretical framework of the seven AD-
MSR constructs presented in Figure 5 imply that
these constructs are closely related and should be
considered both individually and as a whole.
For example, the Models of Pariability (MoV)
construct indicates a progression of understand-
ing that culminates in modeling phencmena with
chance devices. As the arrows at different MoV
levels in Figure 5 illustrate, this construct relies
on an orchestration of the components of the other
data modeling constructs. The arrows in Figure 5
represent the specific theoretical connections be-
tween two levels of different constructs — success
at the level at the “point” of the arrow requires
that a student has already succeeded at the level
at the base of the arrow. The inclusion of these
arrows in the [earning progression in represents
the ADMSR hypothesis that a student not only
moves vertically up a single construet, but can
also be expected to be moving in a coordinated
way across several constructs (i.e. a student oper-
ating at a given level in one of the constructs will
likely be operating at a specific level on one or
more of the other constructs in the leaming pro-
gression). Additionally, the shaded area labeled
“Bootstrapping” between the top levels of the
Data Display (DaD) and Meta-Representational
Competence (MRC) constructs represents levels
of the twe constructs where a student’s ability
on one construct is increased with advancement
on the other construct, and vice-versa, but where
there is no theorized one-way causal connection.

Unidimensional Analysis of Individual
Consiructs

The ADMSR project created seven distinet
constructs that compose the Dafa Modeling
learning progression. Each construct is defined
by a construct map, which represents a cognitive
theory of leaming consistent with a developmen-
tal perspective. Each latent trait is broken up into
different ordered levels of performance within the
construct. An instrument was created to measure
the constructs, and data were collected. Following
the administration of the instrument, the construct
map must be re-examined in light of the data fo
test whether the proposed theory of development
presented by the construct map is supported by
the results. In addition, finther investigation into
the relationship between the construct map and
the instrument must be undertaken in order to be
facilitate the use of the student level results to
evaluate progress on the latent variable. Here, two
of the seven construcis, Data Display (DaD} and
Conceptions of Statistics (CoS), are examined in
light of the collected data.

The Data Display (DaD) Construct

The Data Display construct outlines the
progression of students’ perceptions of data,
particularly the ways they might think about con-
structing or interpreting a display {e.g., a graph) as
ameans of better understanding the phenomenon
in question. This construct describes a shift from
a case-specific to an aggregate perspective of the
data display. The highest level describes an inte-
gration of both perspectives. The construct map
for the DaD construct is presented in Figure 6.

At level DaD1, students interpret displays
as collections of values, but they tend not to link
displays to the purposes of the display, such as the
question that motivated its construction. At level
DaD2, students interpret displays by focusing on
particular cases. For example, students notice the
relative value (order) of cases, their distinctive-
ness (e.g., outliers), or their commonalities (e.g.,
repeated values). Level DaD2 is divided into
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Data Display

DaD6 — Integrate case with aggregate perspectives.

DabiA subsets of cases,

Discuss how general patterns or trends are either exemplified or missing from

displays.

Dal}5 — Consider the data in aggregate when interpreting or creating

DaDSE ralio, propostion o percent.

Quantify ageregate property of the display using one or more of the following:

DaD54 Recognize that a display provides information about the data as a collective.

DaD4 — Recognize or apply scale properties to the data.

DaD4B Recognize the effects of changing bin size on the shape of the distribution.

see holes and clumps in the data.

DaD4A Display data in ways that use its continuous scale (when appropriate) to

DaD3 ~ Notice or construct groups of similar values.

Dab3id N| Notice or construct groups of similar values from distinct vatues.

displays of data.

DaD2 — Focus on individual values when constructing or interpreting

DaD2B Construct/interpret data by considering ordinal properties.

DaD2A

data,

Concentrate en specific data paints without relating thess to any structure in the

data creation.

DaD1 — Create displays or interpret displays without reference to goals of

DaDId |7Create or interpret data displays withaut relating to the goals of the inquiry.

Figure 6. Data Display (DaD) Construct Map from the ADMSR Learning Propression

two sub-levels, DaD2(a) and DaD2(b). At level
DaD2(a), students concentrate on specific data
points without relating these to any structure in the
data, while students at level DaD2(b) construct or
interpret data by considering ordinal properties,
These two sub-levels, like all sub-levels in the
ADMSR constructs, draw a distinction between
different student performances at a given level but
are not ordered within that level, Thus, a student
who is leaming at level DaD2(a) is theorized to
be at the same level as a student who is learning
at level DaD2(b).

At level DaD3, students begin to step to-
ward thinking about aggregates of cases when
they construct or interpret displays. Level DaD4
marks a transition to employing a scale to thinking

about aggregates of data, either by constructing
displays with these characteristics (where ap-
propriate} or by interpreting displays in light
of the presence or absence of scale properties.
Level DaD4 consists of sub-levels DaD4(a) and
DaD4(b). At DaD4(a), students can display data
in ways that use its continuous scale to see holes
and clumps in the data. At DaD4(b), students
begin to recognize the effects of changing bin
size on the shape of the distribution. Level DaD5
continues this shift toward the aggregate, which
is assisted by quantification of aggregates. At this
level, students might annotate a display to indicate
the percentage of values in different classes, or
they may employ statistics to quantify aggregate
qualities, such as spread, and then annotate a
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display accordingly. Level DaDs5 consists of two
sub-levels, DaD5(a) and DaD5(b). At DaD5(a),
students can recognize that 4 display provides
information about the data as a collective. At
DaD35(b), students begin to quantify aggregate
properies of the display by using one or more
of the following: ratio, proportion or percent,
Finally, at level DaD6, students integrate case-
and density-based perspectives. They view cases
as representative of regions of the data, and they
begin fo use aggrepate data trends to evaluate
individual cases. The skills shown by a student
at DaD6 are difficult to interpret in a writien test,
and thus no items in the current assessments tap
into this level of the construct.

The Conceptions of Statistics (CoS) Construct

As its label indicates, the CoS construct
describes the development of the concepts of
statistics. It reflects the perspective that statistics
are summary measures of data that are developed
to answer research questions about distributions.
It is important that stedents come to see the
functions of statistics as ways to characterize
qualities of the sample distributions (i.e., central
tendency and spread) and not merely as an obliga-
tory procedural step in working with data. Refer
back to Figure 2, presented earlier, for the CoS
construct map.

At level Co81, students describe qualities
of distribution informally by using visual quali-
ties of data such as identifying clumps, noticing
holes, or discussing the “spread” of data. Atlevel
CoS2, students calculate statistics, but may fail to
reason about the statistic as a measure of a qual-
ity of a distribution. For example, a student may
calculate the mean but neglect to relate the mean
to the center of the distribution or not consider
the effects of outliers on the mean, Level CoS2
consists of two sublevels which make a distinc-
fion between calculating statistics that indicate
central tendency (CoS2(a)) and those that indicate
variability (CoS2(l)). At level CoS3, students
conceive of statistics as measures of qualities of a
distribution, such as its center and spread. Hence,
they can reason about the effects of changes in
distribution, such as the presence or absence of

extreme values, on the resulting valve of a statistic
(Co83(d)). The initial step of this level (CoS3(a))
starts with inventing or appropriating different
ways to summarize qualities of distribution and
then includes recognition that different statistics
may be appropriate given particular contexts
(ie., the process generating the distribution) and
forms of distribution (CoS3(B)). At level CoS4,
students begin by noting and expecting sample-
to-sample variability in a statistic (CoS4(a)) and
attribute this variability to chance (CoS4(b)). As
students investigate sampling variability, they
come to understand regularities in variability
that can be described by a sampling distribution.
For example, students may realize that althongh
changes in the location of the mean are expected

from sample to sample, the variability of the -

samples” means is lower than thé variability
of the measurements constituting each sample
(CoS84(c)). This culminates in predicting the ef-
fects of changes in properties of a sample on the
sampling distribution (CoS4(d)).

Sample and Assessment Data

The ADMSR project administered a pre-test
to the students prior to any of them receiving any
of the Data Modeling curriculum, and a post-test
once the lessons were completed. The students
ranged in grade level from grades four through
seven, and were located in Arkansas and Wiscon-
sin public schools. Due to observations of low
levels of ability from the pre-test and subsequent
concerns of a floor effect that would not provide
for the best possible estimates of item difficul-
ties, the data presented here is exclusively from
the post-tests, which were administered to 1002
students, who were all exposed to the Data Mod-
eling curriculum, The post-test contained items
that tested students’ knowledge of all seven of the
constructs that comprise the learning progression
introduced above. A complex matrix-sampling
design was used to allow for a greater number of
items to be tested than each student could take in
a single sitting, Using a matrix-sampling design
allows gathering large amounts of data without
imposing extra burden on the individual students.
A total of seven different test forms were used.
Each student was exposed to 20 multi-part items,
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while a total of 53 multi-part items, with 110 indi-
vidually scored parts, were administered.

For both the Arkansas and Wisconsin post-
test scoring, multiple scorers were assigned sets
of items and students to score. Depending on the
number of students who saw each item, either two
or three scorers were assigned to a particular item.
For most items, one of the raters was an experi-
enced scorer who was involved in the creation
process of the scoring guide. For each rater-item
pair, there was a minimum of 30 student scored in
common. Rater analyses were performed on the
data for each of the seven constructs. Differences
in rating patterns were identified using Linacre’s
FACETS model (Linacre, 1994). This model was
used to identify harsher or more lenient raters and
the consistency of a rater when compared to other
raters, After applying this model and analyzing
the results, we concluded that there were no sig-
nificant rater effects present. Upon completion of
the rater analysis, in an effort to reduce parameters
and simplify subsequent analyses, rater informa-
tion was dropped. If two raters scored a student
and their scores did not agree, then only one of the
scores was chosen. If one of the scores was from
a more expert rater then that score was chosen.
If neither of the scorers were considered expert,
then one of the scores was chosen at random. Afler
both post-tests were scored and rater reliabilities
were checked, student scores from all locations
were combined for a single dataset containing
-1002 students. The distribution of these items
across the seven ADMSR constructs is presented
in Table 1. Note that many of the items occurred
in multi-part tasks.

Modeling the Data using Item Response Models

To determine if each construct is being
well-measured, the data is analyzed within an
the Rasch framework (Rasch, 1960; Wright and
Masters, 1982;) describes the relationship be-
tween the person ability and the probability of a
certain response on an item. In its simplest case,
it specifies a relationship between the person
ability, the item difficulty, and the probability of
a correct response to a dichotomous item. IRT
models can also be used to handle categorical
outcomes (ordinal categorical responses in this
case), where the probability being modeled is that
of a person responding at a certain level or higher
on a polytomous item.

The IRT model that we apply to the data here
is the partial credit model (PCM; Masters, 1982).
The PCM was selected because the data is ordinal
polytomous data, and we do not expect the dif-
ferences between category step difficulties to be
consistent across all items. The PCM, specified
in Equation 1, models the probability of person
p responding in category f of item i as a function
of the person ability BF and step parameters Gﬁ:

\__ AP Z::l}(ﬂl’ _6”)

Pr(x, = j|0 ,

r("‘w Jl ”Zloexp :=o(9p_6")

F=01...,m, (1)
where

Z.Lo(gp _ﬁﬁ') =0,8, ~ N(0,%),

and m, is the total number of steps in item 7 (so
m,+ 1 is the number of categories). The PCM can

Table 1
ADMSR Posi-test Items
Multi-Part Individually
Construct Tasks Scored Parts

Theory of Measurement (ToM) 8 14
Data Disptay (DaD) 12 21
Meta-Representational Competence (MRG) 7 13
Conceptions of Statistics (CoS) 10 18
Chance (Cha) " 20
Models of Variability (MoV) 8 12
Informal Inference {int) 1 12
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also be specified (Equation 2) as the log ratio of
the probability of person p responding in category
Jj of item i to the probability of responding in
category f— 1 as a function of the person ability
Bp and step difficulty Sﬁ:

Pr(x'?‘=j|61’) =0 —§
Pr(x,=j-116,) * ¥

F=01...,m, @

In

where 9p~ N(0,), and m, is the total number of
steps In item i.

APCM was fit to the data for each of the Co3
and DaD constructs individually and parameters
were estimated by evaluating the marginal maxi-
mum likelihood using Gauss-Hermite quadrature
with the ConQuest software (Wu, Adams, Wilson,
and Haldane, 2007).

Instrument Properties: Ttem Fir and Reliability

After fitting the model, the first step we take
is to exarnine whether or not items are performing
in & satisfactory way. This is done by examining
how well the data fit the model through the use
of “fit” statistics that report how much the per-
formance of the item differs from how we would
expect it to perform in relation to the other items
in the instrument. Specificaily, we considered
the weighted mean square fit (WMS) statistics
(Wright and Masters, 1982) for the item parameter
estimates. This statistic focuses attention on the
question of whether the slope of the item charac-
teristic curve is constant across the items. A WMS
statistic at a value of 1.0 represents “perfect fit™.
Thus, values are examined as to how the statistic
varies from 1.0, Mean square fit statistic values
above 1.0 are indicative of situations where the
item has a lower slope, and hence is behaving in
a way that is less consistent with the rest of the
items in the instrument than was expected. Values
that are less than 1.0 indicate that an jtem has a
higher slope than was expected, and often this is
associated with local dependence issues,

As with all statistics, we pay attention to both
the “effect size™ and the “statistical significance”
of these fit statistics. To test for statistically sig-

nificant misfit, we look at the 95% confidence
inferval around 1.0. If a fit statistic lies outside
the confidence interval, then we reject the null
hypothesis that the data conforms to the model at
the p = 0.05 level. Thus, if an item’s fit statistics
fall outside of the confidence interval, then the
performance of the item is significantly different
from what we expected based on the estimated
item parameters. We will also need to look to the
“effect size” of the fit statistics to determine if
the misfit is large enough to deserve increased
consideration. Historically, a range of 0.75 to
1.33 of the fit statistic itself is used as criterion
to determine whether the items misfit (Adams
and Khoo, 1993), If the fit statistic falls outside
of this range, then we consider these iteins to be
misfitting due to their effect size. We reserve our
attention here for items that misfit in terms of both
effect size and statistical significance,

In the sections below, we show example
analyses form only two of the seven dimensions—
we decided, on the one hand, that describing all
seven, while being thorough, was more than what
was needed to explain our approach. On the other

Table 2

Data Display Weighted Fit Statistics
Weighted  95% Confidence Interval

ltem MNSQ Around 1.0
GottaGo1l 0.92 {0.89,1.11)
GottaGo2 093 (0.91,1.09)
GottaGo3 0.58 {0.86,1.14)
App1 1.14* (0.90,1.10)
Bowl1 0.98 (0.90,1.10}
Bowl2 1.02 {0.91,1.09)
CrabiMG 1.02 (0.88,1.12)
Crab2 1.17* (0.84,1.16)
Crab3 0.99 (0.86, t.14)
[Se] 0.91 (0.89,1.11)
Head2 1.03 {0.91,1.09)
LiCherry 121" {0.87,1.13)
Maxs 0.99 {0.93,1.07)
Rockett 0.76* (0.83,1.17}
Rocket2 1.14 {0.75,1.25)
Candlet 0.93 {0.89,1.11)
Candle2 098 (0.88,1.12)
Statued 0.98 {0.88,1.12)
Statueb 1.01 (0.86,1.14)
Statue8 093 (0.88,1.12)
StateCap2 1.39" (0.87,1.13)

Note: * indicates that the value is outside the 95%
confidence intervat.
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hand, we felt that two examples would better
portray the variations that we saw in the results,

The weighted mean square fit statistics for
the items on the DaD construct are displayed
in Table 2. Five of the twenty-one items on the
DaD construct had a weighted mean square fit
statistic that was outside the range of the 95%
confidence interval. Out of these five items that
had statistically significant misfit, only one item
{“StateCap2”) was ontside of the acceptable .75
to 1.33 effect size range, and thus is the only
item about which we have any misfit concerns
for the DaD construct. Based on the high misfit
of the StateCap2 item, the item will be further
scrutinized fo attempt to identify some property
or characteristic of the ifem that has caused the
misfit. It was decided that the item will remain in
the analysis for now. Any future administration
of an instrument to assess students on the DaD
construct should closely monitor the behavior of
this item in future samples, and may ultimately
need to eliminate the StateCap?2 item if the misfit
continues to occur.

The weighted mean square fit statistics for the
items on the CoS construct are displayed in Table
3. 8ix of the eighteen items on the CoS construct
had a weighted mean square fit statistic that was
outside the range of the 95% confidence inter-
val. Out of these six items that had statistically
significant misfit, only one item (“FreeThrow™}
did not have a value between 0,75 and 1.33, and
thus is the only item that requires any concern
about misfit on the CoS construct. As was the case
with the StateCap2 item on the DaD construct,
the FreeThrow item will be farther scrutinized
to identify if any property or characteristic of the
itern has caused the misfit.

Here, the item will remain in the analysis,
but in the future should be closely monitored and
removed, if necessary, should the misfit continue
to occur.

In addition to the item fit, we also examine
the precision of the person ability estimates. For
this, we look to the EAP/PV reliability coefficient.
The EAP/PV reliability is the explained vari-
ance according to the estimated model divided
by the total person variance (Adams, 2006), and

Table 3
Conceptions of Statistics Weighted Fit Statistics
Weighted Confidence interval
Item MNSQ Arpund 1.0
GottaGo1 092 {0.89,1.11)
MaxdMGC 0.98 {0.90,1.10)
TallestTreel  0.88 {0.75,1.25)
TallestTree2 0.80 {0.79,1.21)
BallMedian 0.82 (0.82,1.18)
BallMode o.82* {0.83,1.17)
BallMean .0.80 {0.87,1.13)
Ball2 0.85 (0.88,1.12)
Ball3 0.81 {0.88,1.12)
Caffeine2 1.16 (0.76,1.24)
Corn2 1.2 {0.86,1.14}
Kaylat 0.90 (0.80, 1.20)
Range2 1.07 {0.76,1.24)
Swimming? 1.30¢ {0.61,1.19)
Swimming2 0.83 {0.80,1.20)
Swimming3 0.86 {0.81,1.19)
Battery1 1.11 {0.80,1.20)
Battery2 1.18" (0.83,1.17)
FreeThrow 1.58* {0.83,1.17)

Note: * indicates that the value is outside the 95%
canfidence interval.

is provided by the ConQuest software. For this
data, the EAP/PV reliability is 0.64 for the CoS
construct and (.74 for the DaD constructs. These
reliability estimates, however, are misleadingly
low due to the design of the test forms. The dif-
ferent test forms given to students had items from
all seven of the Data Modeling constructs. Due
to the matrix-sampling design described above,
no student responded to all the items from any
construct, and few items were given to all of
the students, The EAP/PV reliability estimates
reporied comes from an analysis of all student
responses from across the forms, which includes
all of the item data missing due to the test design,
and thus gives an underestimate of the reliability
for those constructs that one would expect in a
normal administration.

Thus, in order to get meaningfully compa-

‘rable reliability estimates, we estimated what the

reliability would be for a five-item instrument for
cach construct based on simutations. The simu-
lated data sets assurmed that the entire instrument
was from only one of the seven constructs. In
the simulations, we used the item and item-step
difficulty parameters and the distribution of
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person abilities from the analysis with the real
data. The simulations ran with » =1000 students
and assumed that there was no missing data, i.e.,
all students answered all 5 items for the given
construct. By eliminating all of the data that was
missing by the design of the test forms and by
limiting the size of the test to 5 items (a realistic
{ength for a classroom assessment), the analysis of
the simulated data gives a more realistic estimate
of the reliability for a more realistic context, The
EAP/PV reliabilities for the DaD and CoS con-
structs from the sample data and the simulated
data are displayed in Table 4.Note that the reli-
ability increase for both of the constructs even
with the reduction of items, due to the elimination
of the missing data.

Table 4
EAP/PV Reliabilities by Construct

Construct Original  Adjusted
Data Display {DaD) 0.74 0.80

Conceptions of Statistics {CoS)  0.64 0.B3

Using a Wright Map to check the consistency of
the results with the theoretical expectations—
Data Display

The person ability estimates and the item
difficulty estimates fromn the PCM analysis can
be summarized graphicaily using a Wright Map
(Wilson, 2005). By representing both the person
abilities and item difficulties (and the consiruct
map levels that they relate to} on the same scale,
the resulis of the partial credit analysis can be
related to the proposed theory of development
presented by the construct maps. In this section,
we first describe how to interpret a Wright Map,

and the describe how we used the Wright Map .

results to check whether {a) the items mapped
consistently to the levels they were intended to
map to, and (b) whether the empirical results were
consistent with the intended order of the construct
levels. We use two dimensions, DaD and CoS, to
illustrate some variations in our approach.

In a Wright Map, item difficulties and per-
son proficiencies are graphed on the same scale.
Lower difficuity items and lower proficiency
students appear at the bottom of the scale, while

higher difficulty items and higher proficiency
persons are at the top. Hete, in an effort to improve
interpretation, the items side of the Wright Map
will display the Thurstonian thresholds instead
of only locking at the item difficulties and the
corresponding steps. At any transition from one
level of Tesponse to another on a given item, a
Thurstonian threshold is the focation in logits at
which a person has a 50% probability of achieving
a score in that category or higher (Wilson, 2005).
These locations can be identified on cumulative
probability plots as the points where the curves in-
tersect with the probability equal to 0.5 line. These
values tend to be more interpretable because they
identify levels where students are most likely to
achieve specific scores (Kennedy, 2005).

The initial Wright Map for the Data Display
construct with all of the items is displayed in
Figure 7. This version of a Wright Map has been
ordered so that each column represents a different
level of the Data Display construct. This repre-
sentation helps to see which items are behaving
unexpectedly compared to other items at the same
hypothesized level of difficulty.

The left side of the Wright Map on Figure
‘1 shows the values on the logit scale, then the
distribution of student proficiencies, These stu-
dent proficiencies/abilities appear to be roughly
normally distributed, which is one of the as-
sumptions we made in estimating the model.
Moving to the right side of Figure 7, the Wright
Map displays the thresholds for each item step
that have been separated into columns, which
correspond with the levels of the construct map
for DaD. The first of these columns is labelled
“No Link” and is reserved for scores that show
some sort of relevant response to the item, but are
not up to the lowest fevel of the DaD construct
(level 1). The values in the “No Link” column
represent the thresholds for the boundary between
the “No Link(i)” and “Missing” responses and
the “No Link(ii).” Since each column represents
thresholds that correspond to a given level of the
construct map, if the construct map levels have
a reasonably constant meaning across items, the
thresholds in each column should be in a similar
level of difficulty, and the difficulties should tend
to increase as the levels from the construct map
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increase. The Wright Map in Figure 7 suggests
that most items are generally consistent in this
regard, except for some noticeable overlap in
the levels and some surprisingly low threshold
values in level 5. Specifically, the threc “Gotta
Go” (GG1-3) items have threshold estimates in
level 5 that are easier than expected.

Upon a closer inspection of these items,
we can casily distinguish these three items from
the rest of the DaD items. The “Gotta Go™ items
were all multiple-choice items, while the other
DaD items that could be scored at the two highest
levels (levels 4 and 5) were constructed response
items. Students could be credited with level 5 re-
sponses to these items without having to explain
the reasoning behind their answers. Based on this
observation, we conclude that the low threshold
estimates for these items are based on more than
simply construct level, and instead believe that

the inconsistency in ordering is primarily due to
the relative easiness of choosing a response rather
than explaining it. While these items might have
some usefulness in assessing students’ ability on
the Diata Display construct, being multiple-choice
items they do not measure it consistently within
an instrument primarily made of constructed re-
sponse items. In light of these differences, these
items will be removed from future assessments.

The Wright Map can also be vsed to clas-
sify students into the qualitatively distinct levels
of understanding that were hypothesized in the
construct map in Figure 6. Graphical represen-
tations of student proficiencies of this type can
provide useful formative feedback to teachers
for classroom planning and for diagnosing indi-
vidual student needs. As an alternative to the more
conventional method of convening a standard
setting panel that subjectively sets cut-points
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along the Wright Map based on the judgments of

expects (including teachers, curriculum develop-

ers, educational researchers, eic.), here we apply

a quantitatively based method to set cut-points.

This process of setting cut-points along the logit

scale of the Wright map based on the Thurstonian

Thresholds is set forth as follows by Kennedy and

Wilson (2007):

1. Foreach level described in the construct map,
compute the average Thurstonian Threshold
value across items at that level.

2, Take those Thurstonian Threshold averages
and find the midpoint between all of the
adjacent categories.

3. Use the midpoints as the quantitative cut-
point between the levels of qualitatively
distinct understandings described by the

After removing the inconsistent items men-
tioned above, as well as any iterns that had a very
low number of responses at a given level (which
resulted in a very large standard error for that
threshold estimate), cut-points were set for the
Data Display construct and a new Wright Map
with these levels is displayed in Figure 2.

The Wright Map in Figure 8 includes the
cut-points between the construct levels, shown
by the horizontal lines in the graph. The intent of
these cut-points tell us what ability level a stndent
must reach before moving to the fext highest level
of the construct. The items in the shaded boxes
indicate items that behave within the cut-points
for z given level.

As noted by Briggs and Alonzo (2009), this
process of setting cut-points has some inherent
potential problems, some of which are present

construct map.
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here. Although the mean thresholds for the items
at different levels are increasing, the location of
category thresholds across items is inconsistent.
For example, on the Candle? item the amount
of ability necessary for a student to have a 50%
probability of responding at DaD level 3 would
only be enough to give that same siudent less than
a50% chance of scoring at the lower hypothesized
DaD level 2 or higher on items Rocket2, Statue6,
or Applausel, At levels 4 and 5 on the Wright
Map, it appears that there is too much variability
in the locations of the category thresholds. This
is possibly due to the absence of students who
performed near the top levels of the construct
(see Figure 8). While this is of some concern, it
would be premature to make conclusions on the
performance of items in these top levels without
more data of high performing students. In addi-
tion, more items should be included that elicit
student responses on the top levels of the DaD
construct, especially for level 4.

For the lower levels of the Dal> construct,
however, the coneemn is not so much that there is
too much variability in the locations of category
thresholds across items, but that there exist a
number of overlapping items between the differ-
ent construct map levels, The overlapping of items
seems to occur most often between levels I and 2
of the construct. This suggests that these adjacent
overlapping levels are not behaving distinctively
from each other. In light of this, the construct map
should be reconsidered to see if a level 2 response,
when a student focuses on individual values in
the display, is really a task that requires a higher
level of ability to perform than providing a level 1
response. When taking a closer look at the lowest
level 2 items, however, Bowling] and Bowling2
are the only two DaD items where students could
have scored responses at level 2(b) (“Construct /
interpret data by considering ordinal properties™)
and not level 2(a) (“Concentrate on specific data
points without relating these to any structure in
the data"). This suggests that within the level 2
responses, there might exist inconsistencies. Thus,
before any decision is made as to combining the
entirety of level 2 with level 1, there should be
an examination as to whether the lowest level 2

scores, the level 2(b) scores, require similar ability
as to what is being scored in level 1.

Another issue that arises when seiting cut-
points is whether they are precise in classifying
individual students into specific categories. It is
important to keep in mind that the student ability
estimates and the item category thresholds are
both estimated with error. In a high-stakes test-
ing environment, this could create great concern
for misclassification of students. In a classroom
environment, however, where the goal of the
assessment is to provide formative feedback to
the teacher, the concern is mitigated. Borderline
students between 2 levels of a construct map
would receive the same instruction whether or
not they were classified in the higher part of the
lower level or the lower part of the higher level.
If the specific classification of students was a
concern here, then confidence intervals could be
incorporated into the Wright Map in Figure 8 us-
ing the standard errors of the threshold estimates
to identify which borderline students could not
be classified within a certain level of confidence,

The results presented here for the DaD con-
struct suggest the cognitive framework theorized
by the construct map is developmentally ordered
as theorized, but that not all of levels may be truly
distinct from each other, and that the differences in
threshold estimates across items are not uniform
enough to formalize cut-points.

Using a Wright Map to check the consistency of
the results with the theoretical expectations—
Conceptions of Statistics

As we did with the DaD construct, we now
examine the Wright Map for the Conceptions of
Statistics construct to examine the person abil-
ity estimates and the item threshold estimates
from the PCM analysis. The Wright Map for the
Conceptions of Statistics construct with all of the
items is displayed in Figure 9,

When examining the CoS Wright Map, the
student abilities again look to be roughly normally
distributed, and for the most past, the colemns
of item threshold estimates for levels 1 through
3 appear to be grouped near together and to be
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generally increasing in difficulty as the levels in-
crease. Once again, however, there appears to be
considerable overlap between the item threshold
values across the levels. Additionally, it s difficult
to make any conclusions about level 4 on this as-
sessment, because only two items had any level 4
responses. In order to make any conclusions about
how well the instrument assesses the top level of
the construct map, mote items must be developed
that tap into level 4 of the CoS construct, and
students who are at higher levels of the construct
need to be included in the sample.

When taking a closer look at the Tevel 3 items,
one item appears to be easier than the other items.
That item is the “Batiery1” item (particularly the

“Battery1-3” threshold in Figure 9), which was
being piloted for the first time in this sample.
Due to the low vatue for the level 3 threshold, we
examined the item to see if we can discern why a
level 3 response is easier than expected. For this
jtem, the scoring exemplar pave students credit
for a level 3(c) answer (Generalize the use of a
statistic beyond its original context of application
or invention) to students who answered by using
a statistic to indicate typical life span. These level
3(c) responses were either point cstimates such as
median and mean or by estimates of an interval
with a reference to the median or mean. There
was no option to score a student at a level 2(a)
response (Calculate statistics indicating central

Figure 9, Conceptions of Statistics Wright Map
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tendeney). Thus, the item and exemplar in its
current state is likely scoring some responses
that should be at level 2 as level 3 responses. This
would account for the low level 3 threshold esti-
mate. Before inclusion in future assessments of
the CoS construct, either this item, or the scoring
exemplar, must be modified to better differentiate
between a level 2(a) and level 3(c) responses.

After removing the inconsistent CoS items,
as well as the iterns that had a very low numbers
of responses at a given level, cut-points were set
for the Conceptions of Statistics construct and a
new Wright Map with these levels is displayed
in Figure 10. ’

The Wright Map in Figure 10 is a modified
version of Figure 9, and includes horizontal lines
that represent the cut-points between the construct
levels and shaded boxes that indicate items that
behave within the cut-points for a given level.

Here, the mean thresholds for the items at
different levels are once again increasing, and
the location of category thresholds across items
appears to be more consistent than the DaD
construct. The one area where overlap appears
to be an issue is at the lowest threshold estimates
tor CoS level 2. Once again, this suggests that
either theses adjacent overlapping levels are not
behaving distinctively from each other, or that a
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student’s understanding of Conceptions of Sta-
tistics is interacting with the specific content of
a given item. Since the overlap here is limited to
only a few items, Batiery?2 on level | and BallMed
and BallMede on level 2, we would examine
these items in greater detail before making any
conclusions about reconsidering the levels of the
construct map.

The results presented here for the CoS con-
struct once again support the existence of the
developmentally ordered levels set forth by the
construct map, although further examination must
be undertaken for some overlapping items. As
compared to the DaD construct, the uniformity of
the threshold estimates across items provides us
with more confidence in the setting of cut-points
and classification of students.

The Seven ADMSR Constructs as a Learning
Progression

in order to model the seven constructs to-
gether, we fit a multidimensional IRT model that
models each construct as a separate but associ-
ated dimension. Multidimensional item response
models describe the relationship between multiple
person abilities and the probability of a certain
response to an item. By modeling the seven con-
structs togesher using the Multidimensional Ran-
dom Coefficients Multinomial Logit (MRCML;
Adams, Wilson, and Wang, 1997; Briggs and Wil-
son, 2003) maodel, we can try to determine from
ameasurement perspective whether the collected
data support the existence of associations between
these constructs: We can test to see if the ADMSR
data contained seven distinct dimensions. We test
for this by seeing if the fit of the seven-dimension-
al model is statistically significantly better than
the fit of unidimensional model of the data from
all seven constructs. We also examine the corre-
lations between the dimensions that are obtained
from running the seven-dimensional MRCML
model estimation. Fitting the MRCML model
to the student responses should also provide the
additional benefit of increased reliabilities of the
seven constructs,

Furthermore, if the seven constructs can be
aligned on a common scale, the relativities be-

tween the levels of the constructs, as outlined by
the ADMSR theoretical framework in Figure 5,
can be examined. Here, we also apply an align-
ment technique, Delta Dimensional Alignment,
to the results from a multidimensional measure-
ment model to examine the relationships between
the seven constructs and the theorized leaming
progression across constructs. Note that we will
not investigate the evidence for the specific links
shown in Figure 5. The investigations of those are
discussed in a separate series of papers (See Wil-
son, 2005b; Diakow, Iiribarra, and Wilson, 2012).

The Multidimensional Random Coefficients
Multinomial Logit Model

Unidimensional IRT models are based on the
basic assumption that the items in the instrument
measure one latent ability (Lord, 1980). Mul-
tidimensional item response models, however,
are based on the assumption that more than one
ability is required to respond correctly to items on
a test. Generally, multidimensional IRT models
have been classified as either compensatory mod-
els (Reckase, 1985, 2007) or non-compensatory
moedels (Sympson, 1978). Compensatory models
have an additive nature of the probabilities, which
makes it possible for a test-taker with low ability
on one dimension to compensate by having higher
levels of ability on other dimensions (Ackerman,
2003). Non-compensatory multidimensional IRT
models have a multiplicative nature to the prob-
abilities, which does not allow for compensation
by the other dimensions since the probability
of a correct response is limited to the smallest
component probability.

Compensatory multidimensional IRT models
have been proposed that use the cumulative logis-
tic function as the basis of the model (Reckase,
1985, 2007) and also the cumnlative normal dis-
tribution function (McDonald, 1967). Due to the
relative simplicity of mathematical calculations
that can be performed using a logistic formulation,
that is the method followed here.

The multidimensional IRT medel we use in
our analysis is a compensatory logistic model
and is the multidimensional formulation of the
random coefficients multinomial logit model
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(RCML) (Adams, Wilson, and Wang, 1997). The
RCML was designed to allow for flexibility in
designing customized models and has been used
for parameter estimation in the Conquest software
(Wu, Adams, Wilson, and Haldane, 2007). The
multidimensional formulation of the RCML is
the multidimensional random coefficients mul-
tinomial logit model {MRCML; Adams, Wilson,
and Wang, 1997; Briggs and Wilson, 2003).

When we fit the MRCML to the AMDSR
data, we are modeling what Wang (1995) referred
to as between-item multidimensionality (see also
Adams, Wilson and Wang {1997)). Wang classi-
fied multidimensional models and tests as either
having within-iterm and between-item multidi-
mensionality. A between-item multidimensional
test consists of items that each relate to just one
dimension, while 2 within-item multidimensional
test also includes items that relate to more than
one of the 1 dimensions. The items in the ADMSR
item bank mostly include items that relate to
single dimensions, but also have some items that
are designed to relate to multiple dimensions. In
the latter case, however, the item responses are
scored independently for each dimension and
separate parameters are estimated for each of
those dimensions. This independent scoring and
parameter estimation for these items in effect con-
siders themn as independent items, which makes
a between-item analysis reasonable.? Thus, even
though the test is not exactly multidimensional
between items, the independent scoring of an
item on different dimensions allows us to treat
the items as such.

Taking into account the ADMSR items
(polytomous items with ordered categories), the
MRCML generalization can be constrained to
be a multidimensionatl partial credit model (see
Masters, 1982). The between-items form of the

2 A within-item multidimensional analysis was conducted
on the data, and the resulis were compared to the results
of the between-item multidimensional analysis. The two
analyses yielded statistically significantly different results as
a whole when examining total model fit, with the advantage
to the between. item mode), and the parameter estimates for
the affected items (those scored on more than one construct)
were statistically significantly different as welk. Thus, a
between-item analysis is preferred to allow for the inchusion
of independent scoring of an item on more than one construct.

multidimensional partial credit model (i.e., the
between-item version) assumes that for each item
i, with ordered categories of response indexed by
JGF=0,...,J), there corresponds a unique dimen-
sion among a larger set of possible dimensions de-
noted by d(d=1,..., D). The persons responding
toagiven itemare indexed by p (p=1,..., P). The
iog odds of the probability of a person’s response
in category J of item { compared to category /~1 is
maodeled as a linear function of a person’s latent
ability on that dimension (0 pd), and the relative
difficulty of category j (§,, or the step difficulty):

Forj=1,..,J,

1L P RS
Pr(x,P =j—1 |8Pd)

When using this model, each person has a
separate (though possibly correlated) latent ability
estimate for each dimension 4, and a vector of all
of these estimates is represented by . The mean of
the step difficulties (8,) for an item { is an item’s
overall item difficulty &, Thus, cach 5.-; can also
be formulated as &, + 7, where T, is the devia-
tion from the mean item difficulty §, for item / at
step j. Formulated this way, the last t parameter
for each item must equal to the negative sum of
the others 5o that the sum of all the t parameters
equals zero, In the more complicated form of the
multidimensional partial credit model (i.e., the
within-item version) the items may each relate to
more than one dimension. In the analysis here we
use only the between-item version of the model.

Results—Fitting the MRCML to the ADMSR
Data

. After running the seven-dimensional analy-
sis, the first test is to see if the ADMSR data
contained seven distinct dimensions. We tested
this for statistical significance by comparing the
fit of a unidimensional model of the data from
all seven constructs and the seven-dimensional
model. The likelihood ratio test compares the
difference in the deviances of the models with
a chi-squared distribution with the degrees of
freedom equal to the difference in the number
of estimated parameters of the two models. The
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deviances, and number of estimated parameters
from the two models are given in Table 5.

As can be seen is Table 5, the difference
between the deviances of these two models is
1,199.31, and the difference in degrees of freedom
of 27. Applying the likelihood ratio test here,
however, would not be appropriate because the
null hypothesis that is being tested is that the cor-
relation of the 7 dimensions is 1.0, which is at the
boundary of the parameter space for the correla-
tion coefficient (correlations can not be greater
than 1.0). To test for significance here, we follow
the suggestion by Snijders and Bosker (1999) and
divide the p-value of the likelihood ratio test by
two, and still get a statistically significant result.
Thus, we conclude that the seven-dimensional
model fits better than the unidimensional model,
in a statistically significance sense.

‘We also need to decide whether this statisti-
cally significance difference corresponds to an
important effect difference. To explore this, we
looked at the estimated correlations between the
constructs/dimensions that were obtained from
ConQuest when running the seven-dimensional
MRCML model estimation. A matrix of the corre-
lation of the 7 dimensions is presented in Table 6.

Table 5

Relative Model Fit between Unidimensional and
Seven-dimensional

Estimated
Deviance  Parameters

B9435.54 363

Unidimensional

The correlations between the constructs
range from 0.778 to 0.935. Since all seven of the
constructs are part of the same ADMSR. curricu-
lum and were given on a test of related material,
we expected to see relatively high correlations
between the dimensions but not so high as to
suggest that the dimensions are the same. When
the correlations are too high, however, it suggests
that the constructs might not be separate dimen-
sions after all: somewhat arbitrarily, we take 0.95
as a cut-off for dimensions being meaningfully
indistinguishable. As Table 3 shows, none of the
correlations between the constructs are greater
than (.95, Based on these results, which support
that all seven of the constructs measure distinet
dimensions, the ADMSR project continues for-
ward with seven distinct but related constructs.

Fitting the MRCML model to the student
responses also provides the benefit of increased
reliabilities. The correlation structure of the model
improves the reliability of the person ability
estimates, as the information used for the esti-
mates for any single dimension is augmented by
the information from the estimates for the other
dormensions. After fitting the seven-dimensional
MRCML to the data, the reliabilities for the
constructs all increased, with a mean increase of
almost 0.1. This increase in reliabilities leads to
a practical advantage to employing multidimen-
sional models as well, allowing the construction
of shorter tests without the need to sacrifice
reliability,

The person ability estimates and the item
difficulty estimates from the multidimensional

Seven-dimensional 88238.23 390 N | .

Difference 1199.31 27 anaI):'SJ.s can .be summ'fmzed grap!nca[ly using a
multidimensional version of a Wright Map (Wil-

Table 6

Correlations of the Seven Constructs/Dimensions

Construct / Dimension
DaD MRGC CoS Cha MoV inl

MRC 0.832

CoS 0.785 0.872

Cha 0.783 0.843 0.851

MoV 0.807 0.817 0.893 0.902

Inl 0.902 0.886 0.876 0.873 0.935

ToM 0,778 0.811 0.818 0.806 0.847 0.811
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son, 2005). A seven-dimensional Wright Map for
the ADMSR data is presented in Figure 11.

Figure 11 consists of seven student ability
distributions in the left columns and the seven
dimensions of item threshold estimates are on the
right side. The thresholds in each dimension in
Figure 11 are ordered by level so that each column
shows all of the item thresholds for a given level
on the construct map. Figure 11 shows how each
dimension in the Wright Map appears to have
“steps™ across the dimension because the thresh-
olds estimates are rising with each new column
that represents a new level on the construct map
for that dimension. While it may be convenient to
view all seven ADMSR dimensions togetherona
single Wright Map, Figure 11 is limited because it
does not allow for comparisons of the ability dis-
tributions or the item threshold estimates across
the dimenstons. This is because, in common with
other multidimensional modeling approaches, the
MRCML model makes the assumption that the

person ability estimates are centered on zero for
every dimension.? This is necessary for identifica-
tion purposes,

Aligning the Dimensions—Delta Dimensional
Alignment

If we wish to make comparisons across
dimensions, then the next step in our analysis of
the seven-dimensional MRCML requires align- .
ing the dimensions, The problem with the model
assumption that all the person distributions have
a zero mean is that there is no a priori reason
to assume that the students will have the same
mean ability on each dimension — in fact, we
hypothesize that they likely will not because we
believe that some of the constructs represent more
sophisticated forms of understanding. In order to

3 Equivalently, the mean of item difficulties can be set to
zero for every dimension.
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examine whether certain levels of the construct
maps are horizontally associated across the learn-
ing progression, as hypothesized in Figure 5, we
need to use a technique to align the constructs/
dimensions. One such alignment technique is
Delta Dimensional Alignment (DDA; Schwartz
and Ayers, 2011).

The Delta Dimensional Alignment method
aligns multiple dimensions by transforming the
item locations and step parameters obtained after
running an initial multidimensional analysis. The
itemn and step parameters of the different dimen-
sions are transformed by using the means {(m)}
and standard deviations (s) of the subsets of the
items for each dimension (d), which are calcu-
lated from a unidimensional analysis (i.e., when
all of the items are assumed to be from a single
dimension). Thus, this technique is based on an
assumption that the dimensions are somewhat
(positively) correlated, and that the metric of one,
composite, dimexnsion is a reasonable one to use
to align the metrics across all the dimensions.
The step-by-step details of the DDA technique
are described below.,

The first step in DDA is to run a unidimen-
sional analysis assuming that all items come
from a single dimension to obtain item location
estimates. Although we do not believe that this
is exactly true, we nevertheless see it as being
approximately true, as we expect all of the di-
mensions to be moderately to strongly correlated,
Using these item location estimates, compute the
mean (i, ) and standard deviation (o, ) for each
subset of items by dimensien. The next step is
to run a multidimensional dimensional analysis
to obtain another set of item location estimates.
Using the item location estimates, compute the
standard deviation (o) for each subset of items
by dimension. Recall that the mean of each dimen-
sion in this second (multidimensional) analysis
will be zero, due to the identification constraint.
Using the estimates obtained from both analyses,
transform the multidimensional itemn estimates
using the following formulas for item location
and step parameters:

Item location:

T danty

s ansfoemedy = ‘Snd(m.'n;[ ]"‘ Pty (4)

i mufii)
and
Step parameters:

T duniy
T ikd (rangformedy — T fka{muirr) - (5)
d{multi)

Note that these transformations are for the §
and T, parameters values, and are not performed
directly on the threshold values.

The final step of the DDA methed is to un
another multidimensional analysis using these
ransformed item estimates and step parameters
as anchored values, and hence calculating new
values for the Thurstonian threshoelds. Since the
item parameters are anchored in this final analy-
sis, the model can estimate the student abilities
without requiring the previous constraint that the
person ability estimates be centered on zero for
every dimension.

Examining the Links—Results from Aligning the
ADMSR Data

Following the steps of the Delta Dimen-
sional Alignment method, we ran a new MRCML
analysis with the transformed and anchored item
difficulty parameters. The results of this analysis
can be represented with another Wright Map.
Figure 12 shows the results of the aligned multi-
dimensional Wright Map with the thresholds of
all 110 items, representing all seven dimensions.

Similar to Figure 11, Figure 12 is ordered
by level for each dimension and shows the rising
threshold estimates across the dimension. Using
the Wright Map in Figure 12, and the correspend-
ing threshold values, we can now compare the
results of the multidimensional analysis to the
13 hypothesized theoretical connections across
the constructs of the learning progression that are
represented in Figure 5. The evidence supporting
each of the theoretical connections is indirect in
that when a source level is below a target level,
this is consistent with the link, but does not prove
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the link. On the other hand, if the opposite is true,
i.e. a source level is above a target level, then
this would be evidence against the existence of
the link.

In the next few paragraphs we examine a
particular subset of the links, as an example of the
process we use, and then summarize the entire set
of resuits across all of the dimensions.

Starting from the left hand side of Figure 5,
the first two theoretical connections come out of
the Theory of Measurement (ToM) construct at
level 4. The ToM construct maps the degree to
which students understand the mathematics of
measurement and develop skills in measuring. At
level 4 of ToM, a student is beginning to consider
properties of a unit in relation to the goals of
measurement. Within this level, a student starts
to use standard units, consider the suitability ofa
certain unit, qualitatively predict inverse relation
between size of unit and measure, and partition
units by factors of 2 when an object cannot be
measured in whole units. As Figure 5 displays,
the connections from ToM level 4 go to the first
levels of both the Data Display (DaD) and the

MoV constructs. At level 1 of DaD, a student is
beginning to create or interpret displays without
reference to the goals of the inquiry. At level 1
of MoV, a student will be able to identify sources
of variability.

To analyze the connection between level 4
of ToM and level 1 of DaD and MoV, we look at
the mean and range of the threshold estimates for
those levels. The ToM4 threshold estimates have a
mean of (.49 and range from —0.90 to 1.49 logits.
The DaD1 threshold estimates have a mean of
.11 and range from —0.29 to .49 logits, and the
MoV1 estimates have a mean of 0.27 and arange
from 0.12 to 0.48 logits. Comparing these esti-
mates, it appears that the DaD1 and MoV 1 items
are not as difficult as many of the ToM4 items, and
the data might not provide evidence to support the
connection hypothesized in the learning progres-
sion that students proceed from ToM4 to DaD1
and from ToM4 to MoV 1. However, looking more
closely at the ToM construct, however, we see
that ToM4 has three threshold estimates that are
inconsistently higher than the other estimates for
that level, and that the threshold estimates all are
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for items that come from the same multi-part task
called “Ruler.”” After flagging the Ruler task as
requiring further review and removing the Ruler
threshold estimates, ToM4 would only have a
mean value of 0.12 logits. If we compare DaD1
and MoV1 to ToM4 after we have removed the
Ruler items, then it would appear that the item
thresholds of DaD1 and ToM4 are fairly compa-
rable, while the threshold estimates for MoV are
slightly higher. A close-up of the section of the
Wright map containing the ToM, DaD and MoV
constructs is presented in Figure 13.

Figure 13 shows the item threshold estimates
for the three constructs being examined, and it
includes red boxes that indicate the estimates that
are part of the theorized link. With the removal
of the Ruler items, these results provide evidence
to support a progression of students from ToM4

v
v
4 ¥
v
v
2 = v
!v ¥ ¥
Wi v ¥
L d
4 3 ¥ ¥
Y.y ¥
.ﬂ; hd
v | E'
v
0 ia. i ] " hd -
v ¥ ¥ ¥
—v ¥ .; A
v|¥ v
L ] hd ¥ b
L. v
L] v )
4 v
=2
v ¥
- -
Tkl [ AA~NL
-4 1O Bab WY

RN RN EEEERLREEEE
Figure 13. Link Between TolM4 with DaD1 and MoV

to MoV, and that students are performing at
level 1 of DaD at about the same time as they are
performing at level 4 of ToM.

Moving up the ToM construet to level §,
there are two theoretical connections that connect
ToMé to level 3 of the Conceptions of Statistics
(CoS) construct and to level 2 of MoV. The ar-
rows from ToM6 to CoS3 and MoV2 theorize
that a student would need to progress to level
6 of ToM before he could attain the respective
levels of the other constructs. At level 6 of ToM,
students predict the effects of changes in unit on
measure or scale, Students use relations among
units to quantify the effects of a change in uniton
the resulting measure and evaluate tradeoffs when
selecting measurement tools. This is the top level
of the ToM construct. Students at CoS3 conceive
of statistics as measures of qualities of a distribu-
tion, such as its center and spread. Hence, they can
reason about the effects of changes in distribution,
such as the presence or absence of extreme values,
on the resulting value of a statistic. At MoV2,
students informally order the contributions of
different sources to variability, using language
such as “a lot” or “a little.” Students also describe
mechanisms and/or processes that account for
these distinctions, and they predict or account
for the effects on variability of changes in these
mechanisms or processes.

To analyze the connection between ToM6
and CoS3, we [ook to the mean and range of the
threshold estimates for those levels. The ToM6
threshold estimates have a mean of —0.57 and
range from —0.69 to —0.44 logits. The CoS3
threshold estimates have a mean of 1.31 and
range from 0.04 to 3.87 logits. Comparing these
estimates, it is clear that the ToM6 estimates are
lower than the CoS$3 estimates, Based on this
comparison alone, this at least does not contra-
dict the hypothesized connection in the leatning
progression that students reach level 6 of the
ToM construct before reaching level 3 of the CoS
construct. The ToM construct, however, only has
two threshold estimates at [evel 6. Therefore, we
also want to compare TolM4 and ToM5 to CoS3 to
have more confidence in our comparison. Figure

14 contains a close-up of these constructs on the -
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Figure 14. Link Between ToM6 with CoS3 and MoV2

Wright map, with the levels of the theoretical
link highlighted.

By examining Figure 14 and the means of
the threshold estimates for ToM4 (0.15) and
ToM5 (0.49), we find that ToM levels 4 and 5
are both more difficult than ToM6, but are still
clearly lower than the CoS3 estimates. This sup-
ports the hypothesized connection in the learning
progression that students reach the top levels of
the ToM construct before reaching level 3 of the
CoS construct, Thus, the ability to predict the
effects of chanpes in unit on measure or scale
(ToM&6) precedes the ability to conceive statistics
as measures of qualities of a distribrution (CoS3).

To analyze the connection between ToM6
with MoV2, we again compare the means and
ranges of the threshold estimates for those levels.
The MoV2 threshold estimates have 2 mean of 1.0
and range from 0.44 to 1.62 logits, and are clearly
higher than the TolM4-6 thresholds. This supports
the hypothesized connection in the learning pro-
gression that students reach the top levels of the
ToM construct before reaching level 2 of the MoV
construct. Thus, as theorized, it was easier for the
students in the sample to predict the effects of
changes in unit on measure or scale (ToMG6) than
to informally order the contributions of different
sources to variability (MoV2).

Asmentioned above, the shaded area labeled
“Bootstrapping” in Figure $ between MRC3-5
and DaD4-5 represents the aspect of ADMSR
theory of learning that these levels of the two
constructs are where a student’s ability on one
construct increases with a coordinated ability
increase on the opposing construct. This theory
behind this connection is not yet as clear as those
designated by the arrows, and this interaction is
still being explored to determine how to further
model this relationship. The estimates for the
bootstrapping levels are fairly similas, with the
DaD4-5 estimates have a mean of 1.47 logits and
the MRC3-5 threshold estimates have a mean of
1.43 logits. A close-up of the section of the Wright
Map featuring the item threshold estimates for
DaD and MRC is displayed in Figure 15.

Figure 15 shows the item threshold estimates
for DaD and MRC, and it includes two red boxes
that indicate the estimates that are a part of the
bootstrapping section of Figure 5. Note that these
boxes do not include all of the thresholds—two
outtier threshold estimates for the DaD construct
have been excluded. The distributions of the dif-
ferent levels of the two constructs appear to be at
similar values with a fair amount of overlap, with
MRC4 appearing to be slightly higher than the
other levels. Unfortunately, this sample contained
no MRCS scores. Only two items had responses
that could have been scored at this level, but none
of the students produced responses that war-
ranted a MRC5 score. Even though the connec-
tion betweens the DaD4—5 and MRC3-4 levels
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are supported by the data here, future samples
of higher scoring students are needed in order to
make any conclusions regarding the difficulty of
MRCS5 items and how they are related to the DaD»
construct and the other levels of MRC.

Another of the connections represented in
Figure 5 starts at level 6 of Cha and goes to level
4 of CoS. At Cha6, students develop probabilities
for compound (aggregate) events as a ratio of tar-
get outcome(s) and the total number of outcomes.
The level culminates in coordinating relative
frequencies of observed outcomes for aggregate
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events with the probabilities of these outcomes.
Students at CoS54 start expecting sample-to-
sample variability in a statistic, and attribute
this variability to chance. The arrow from Cha6
and Co84 theorizes that a student would need to
progress to level 6 of Cha before he could attain
level 4 of CoS.

To analyze the connection between Chat
and CoS4, we once again look at the mean and
range of the threshold estimates for those levels,
After eliminating one outlier, the Cha6 threshold
estimates have a mean of 0.86 and range from
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0.56 to 1.28 logits. The CoS4 threshold estimates
have a mean of 1,59 and range from 0.82 to 2.38
logits. A close-up of the section of the Wright
map containing the Cha and CoS constructs is
presented in Figure 16,

‘While there exists a small amount of overlap
between the threshold estimates, looking at Figure
16 and comparing the means and ranges of the
thresholds show that the Cha6 threshold estimates
are lower as a whole than the CoS4 estimates.
This supports the hypothesized connection in the
learning progression that students reach the top
level of the Cha consiruct before reaching level
4 of the CoS construct. As mentioned previously,
however, there are only two CoS4 threshold

estimates being compared in this link. So, even
though the data supports the connection, there is
not enough data to make a conclusion until more
CoS4 items are examined.

Throngh similar analyses, we can exam-
ine the remaining theorized connections of the
ADMSR learning progression represented in
Figure 5. The results discussed above and these
remaining results are summarized in Table 7.
These results provide evidence either supporting
or rejecting the theorized relationships between
the constructs. At this time, the ADMSR project
is not removing any of the connections that are
not supported by the data until they are examined
with another sample. Regardless of whether the

Table 7
Summary of Results for Theorized Connections in ADMSR Learning Progression
Hypothesized
Link Chservation Conclusion
ToM4 to Dab1 Partially supported by data. When Ruler _ Examine Ruler iterns. Retain theorized
items are removed, data supports that connection
ToM4 has similar difficulty as DaD1.
ToM4 1o MoV1 Supporled by data. When Ruler items Examina Ruler items. Retain theorized
are removed, data supporis that ToM4 connection
precedes MoV1
ToMB to CoS3 ToM8 thresholds are less than ToM4 Retain theotized connection
and TeM5. Data supports that ToM4-6
all precede CoS3,
ToM6 to Mov2 ToM6 thresholds are less than ToM4 Retain theorized connection
and ToM5. Data supports that ToM4-6
afl precede Mov2
DaD4 to CoS3 Paxtially supported by data. Similar Retain theorized connection

threshold estimates for DaD4 and

CoS3.

Dab5 to Chad

Data does not support connegtion. Dab5s
appears maore difficult than Chad, but
only two Cha4 thresholds.

CoS3 lo Cha3 Data does not support connection, CoS3
is move difficult than Chad.

Co33 to 3 Pata does not support connection. CaS3
is more difficult than Inl3.

CoS4 to Inl7 QOnly one threshold estimate for Int7 and
two estimates for CoS4. Not enough data
for Ini7 in sample.

Chab to GoS4 Only two CoS4 threshold estimates.
Data supports conneciion, but not
enough data to make conclusion.

Cha6 to In15 Data supports that Chaf precedes Inl5.

MoV5 to Inls Only one threshald estimates for MoVs

in sample.

Test on anotier sample 1o gather more
Chad4 data.

Test on another sample before removing
connection
Test on another sample before removing
connection

Test higher performing sample to gather
Co54 and In'7 data.

Retain theorized connection. Examine more

CoS4 items.

Retzin theorized connection.

Test higher performing sample to gather
MoV5 data.
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connections were supported by the data in this
sample, examining the behavior of the students
and the relationships of the items across the con-
structs will aid in the future development of the
ADMSR learning progression.

Conclusions and Future Work

The development of the ADMSR learning
progression relies on both unidimensional and
multidimensional analysis of its seven constructs.
By looking at the constructs of the ADMSR
Icarning progression individually, results from
the partial credit analysis lead to refinements
of the items, the scoring exemplars, and to the
construct maps. For this sample of students, the
unidimensional partial credit analysis has led to
the removal and modification of some items and
scoring exemplars, as well as providing validity
evidence relating to the hypothesized theory of
the consiruct maps.

With varying degrees of success, we applied
a quantitative process for setting cut-points for
student ability levels based on the thresholds of
the item levels. While some concerns may arise
concerning the classification of specific students
of abilities near the cut-points, the Wright Maps
with cut-point scores can provide meaningful
feedback that can assist teachers in determining
the ability levels of their students and subsequent-
ly inform instruction and curriculum decisions.

By examining all seven of the ADMSR con-
structs together in a multidimensional analyses,
and aligning the dimensions, we examined the
estimates of the different levels of the constructs
as hypothesized in the learming progression shown
in Figure 5. For this sample of students, some
of the hypothesized connections in the learn-
ing progression were supported by the analysis,
while others were not. For the unsupported con-
nections, we hesitate to dismiss them based on
the results of the two samples examined here. It
might be the case that while no support for the
connections between construct levels was present
here, there could be evidence of the existence of
the connection when we analyze the responses
for other students. Examining these connections
between constructs helps validate the theory of

the AMDSR learning progression, and it also
influences the curriculum and instruction.

The development of constructs, and a learn-
ing progression, in the BEAR Assessment System
is an iterative process. Refinements are made after
each sample in analyzed, and then tested on a
new sample. The ADMSR project is ongoing in
its development of a curriculum and assessment
for the data modeling learning progression, and
will continue this process with each successive
sample,
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